沉銀工藝是線路板表面處理的工藝之一,也是線路板制作過程中的最后一道工序,該工藝直接決定著成品線路板的質量。為了提升把控沉銀工藝技術的能力,我們對亞洲主要的使用廠商進行了為期一年(到2005年7月為止)的調查,目的在于探討造成銀層缺陷的最普遍原因和如何通過優化沉銀工藝來減少在量產時的各種缺陷,有關調查結果公布如下:
一、調查
本調查共有93家廠商(包括64家PWB制造廠商和29家裝配廠商)參與,根據他們的反饋,造成缺陷或報廢有6個主要的原因:賈凡尼效應、腐蝕、露銅、離子污染、微空洞、可焊性
很明顯,因為印制線路板完成裝配后不能重工,所以因微空洞而報廢所造成的成本損失最高。雖然其中有八個PWB 制造廠商因為客戶退件而注意到了該缺陷,但是此類缺陷主要還是由裝配廠商提出。
可焊性問題根本沒有被PWB制造廠商報告過,只有三家裝配廠商誤將發生在內部有大散熱槽/面的高縱橫比(HAR) 厚板上的”縮錫”問題(是指在波峰焊后焊錫只填充到孔深度的一半)歸咎于沉銀層。經由原始設備商(OEM)針對此問題更深入的研究驗證,此問題完全是由于線路板設計所產生的可焊性問題,與沉銀工藝或其他最終表面處理方式無關。
二、根本原因分析
通過對造成缺陷的根本原因分析,可經由工藝改善和參數優化相結合的方式將這些缺陷率降到最低。
賈凡尼效應通常出現在阻焊膜和銅面之間的裂縫下。在沉銀過程中,因為裂縫的縫隙非常小,限制了沉銀液對此處的銀離子供應,但是此處的銅可以被腐蝕為銅離子,然后在裂縫外的銅表面上發生沉銀反應。因為離子轉換是沉銀反應的源動力,所以裂縫下銅面受攻擊程度與沉銀厚度直接相關。
2Ag+ + 1Cu = 2 Ag + 1Cu++ (+ 是失去一個電子的金屬離子)
下面任何一個原因都會形成裂縫:側蝕/顯影過度或阻焊膜與銅面結合不好;不均勻的電鍍銅層(孔口薄銅處);阻焊膜下基材銅上有明顯的深刮痕。
腐蝕 是由于空氣中的硫或氧與金屬表面反應而產生的。銀與硫反應會在表面生成一層黃色的硫化銀(Ag2S)膜,若硫含量較高,硫化銀膜最終會轉變成黑色。銀被硫污染有幾個途徑,空氣(如前所述)或其他污染源,如PWB包裝紙。銀與氧的反應則是另外一種過程,通常是氧和銀層下的銅發生反應,生成深褐色的氧化亞銅。這種缺陷通常是因為沉銀速度非???形成低密度的沉銀層,使得銀層低部的銅容易與空氣接觸,因此銅就會和空氣中的氧產生反應。疏松的晶體結構的晶粒間空隙較大,因而需要更厚的沉銀層才能達到抗氧化。這意味著生產中要沉積更厚的銀層從而增加了生產成本,也增加了可焊性出現問題的機率,如微空洞和焊接不良。
露銅 通常與沉銀前的化學工序有關。這種缺陷在沉銀工藝后顯現,主要是因為前制程未完全去除的殘留膜阻礙了銀層的沉積而產生的。最常見的是由阻焊工藝帶來的殘留膜,它是在顯影液中顯影未凈所致, 也就是所謂的“殘膜”,這層殘膜阻礙了沉銀反應。機械處理過程也是產生露銅的原因之一,線路板的表面結構會影響板面與溶液接觸的均勻程度,溶液循環不足或過多同樣會形成不均勻的沉銀層。
離子污染 線路板表面存在的離子物質會干擾線路板的電性能。這些離子主要來自沉銀液本身(殘存在沉銀層或在阻焊膜下)。不同沉銀溶液離子含量不同,離子含量越高的溶液,在同樣的水洗條件下,離子污染值越高。沉銀層的孔隙度也是影響離子污染的重要因素之一,孔隙度高的銀層容易殘存溶液中的離子,使得水洗的難度增大,最終會導致離子污染值的相應升高。后水洗效果同樣會直接影響離子污染,水洗不充分或水質不合格都會引起離子污染超標。
微空洞 通常直徑小于1mil,位于焊料和焊接面之間的金屬界面化合物之上的空洞被稱為微空洞,因為它實際上是焊接面的“平面空泡群”,所以極大的減小了焊接結合力。OSP、ENIG以及沉銀表面都會出現微空洞,其形成的根本原因尚未明確,但已確認了幾個影響因素。盡管沉銀層的所有微空洞都發生在厚銀(厚度超過15μm)表面,但并非所有的厚銀層都會發生微空洞。當沉銀層底部的銅表面結構非常粗糙時更容易產生微空洞。微空洞的發生似乎也與共沉積在銀層中的有機物的種類及成分有關。針對以上所述之現象,原始設備廠商(OEM)、設備生產服務商(EMS)、PWB制造廠商以及化學品供應商進行了數個模擬條件下焊接研究,但沒有一個能夠徹底消除微空洞。
上一篇:PCB高濃度有機廢液處置說明
下一篇PCB化學鍍銅溶液空氣攪拌原因
溫馨提示:
凡在本公司進行電路板克隆業務的客戶,必須有合法的PCB設計版權來源聲明,以保護原創PCB設計版權所有者的合法權益;